
2026/02/06 10:17 1/9 LXC Quick-Start

LUSC - http://vvv.lusc.de/dokuwiki/

LXC Quick-Start

Basis: Frisch installiertes Debian 10 „Buster“ (hier: als virtuelle Maschine)
Zum Spielen reichen 2 Cores, 2GB RAM und 10GB HD.
Jeweils das doppelte macht aber mehr Spaß ;)
Eine NIC, mit Internet-Anbindung

Vorbereitung

Notwendige Pakete

lxc - Die zentrale Befehle zum Umgang mit LXContainer
bridge-utils - Zum Verwaltung von Network Bridges
iptables (oder nftables oder …) zum NAT der ausgehenden Verbindungen
ggf. dnsmasq - kleiner DHCP- und DNS-Server (wird auch von libvirt genutzt)

Bridge als Netzwerk-Basis für die LXContainer

Vorteil dieses Setups ist, dass die Container erst mal nur vom lokalen Host angesprochen werden
können und man sich keine Sorgen um Sicherheitslücken o.ä. „von außen angreifbar“ machen muss.

Bei den meist verwendeten veth-Interfaces („virtual ethernet“) sieht man einen Teil im Container
(meist „eth0“, konfigurierbar)und einen Teil im Host-System (meist „veth??????“). Damit diese sauber
ins Internet kommen und/oder untereinander kommunizieren können, brauchen wir eine „Bridge“.
Diese kann man sich im wesentlichen wie einen Switch (na gut, eher ein Hub) vorstellen, welcher in
Software realisiert wird. Dazu legt man eben so ein Interface an, hier mit dem Namen „br-lxc“:

/etc/network/interfaces.d/br-lxc

auto br-lxc

iface br-lxc inet static
 address 192.168.42.1/24

 bridge_ports none
 bridge_maxwait 1 bridge_stp on

 up /sbin/ip link set up dev br-lxc

Dann fährt man die Bridge hoch:

root@lxc-host:~# ifup br-lxc
Waiting for br-lxc to get ready (MAXWAIT is 1 seconds).

root@lxc-host:~# ip -4 -brief -c a ls

http://vvv.lusc.de/dokuwiki/_export/code/orga/2020/lxc?codeblock=0

Last update: 2020/06/26 08:48 orga:2020:lxc http://vvv.lusc.de/dokuwiki/orga/2020/lxc?rev=1593161335

http://vvv.lusc.de/dokuwiki/ Printed on 2026/02/06 10:17

lo UNKNOWN 127.0.0.1/8
enp1s0 UP 192.168.99.42/24
br-lxc DOWN 192.168.42.1/24

root@lxc-host:~# brctl show br-lxc
bridge name bridge id STP enabled interfaces
br-lxc 8000.000000000000 yes

Später sieht man beim brctl show br-lxc unter „interfaces“ dann die veth?????? der
LXContainer.
enp1s0 ist hier das externe Interfaces (private IP weil es ja auch nur eine virtuelle Maschine ist)

Routing & NAT

Normalerweise ist das Routing von Paketen „durch den Linux-Kernel“ abgeschaltet. Für uns heißt das,
dass die LXContainer noch nicht ins Netz kommen. Wir müssen also das Routing („IP forwarding“)
aktivieren und anschließend die internen IP-Adressen der Container noch auf unsere „öffentliche“
Adresse NAT'en.

/etc/sysctl.conf

Uncomment the next line to enable packet forwarding for IPv4
net.ipv4.ip_forward=1

Um die Änderung zu aktivieren, rufen wir sysctl eben von Hand auf - inkl. anschließender Kontrolle.
Bei einem Reboot wird der Eintrag automatisch gelesen und gesetzt.

root@lxc-host:~# sysctl -p /etc/sysctl.conf
net.ipv4.ip_forward = 1

root@lxc-host:~# cat /proc/sys/net/ipv4/ip_forward
1

Last but not least das NAT'ing der internen IPs (siehe br-lxc-Konfiguration oben, IP-Netz
192.168.42.1/24) Richtung Internet

root@lxc-host:~# iptables -t nat -A POSTROUTING -s 192.168.42.1/24 -o en1ps0
-j MASQUERADE

ACHTUNG Dieser Aufruf gilt nur bis zum Reboot!
Permanent kann man das z. B. mit Hilfe des Pakets iptables-persistent speichern
Alternativ trägt man in /etc/network/interfaces.d/br-lxc zusätzlich die Zeilen

up /sbin/iptables -t nat -A POSTROUTING -s 192.168.42.1/24 -o en1ps0 -j
MASQUERADE
down /sbin/iptables -t nat -D POSTROUTING -s 192.168.42.1/24 -o en1ps0
-j MASQUERADE

ein

http://vvv.lusc.de/dokuwiki/_export/code/orga/2020/lxc?codeblock=2

2026/02/06 10:17 3/9 LXC Quick-Start

LUSC - http://vvv.lusc.de/dokuwiki/

DHCP & DNS - dnsmasq

Die meisten Images für Container gehen davon aus, dass IP-Adressen per DHCP vergeben werden.
Außerdem müssten wir noch für einen DNS-Server/-Forwarder sorgen. Beides kann dnsmasq recht
einfach bereitstellen. Nach der Installation fügt man folgende Zeilen am Ende der Datei
/etc/dnsmasq.conf ein:

/etc/dnsmasq.conf

local=/br-lxc/
domain=br-lxc
expand-hosts

interface=br-lxc

dhcp-range=br-lxc,192.168.42.100,192.168.42.199,60m

dhcp-no-override
dhcp-authoritative

dhcp-option=option:dns-server,192.168.42.1
dhcp-option=option:router,192.168.42.1

Restart des Dienstes:

root@lxc-host # service dnsmasq restart

Container erstellen

Der vermutlich am häufigsten aufgerufene Befehl ist lxc-ls. Sinnvoll ist, wenn man sich gleich den
Aufruf lxc-ls -f („fancy“) merkt - oder sich ein Alias darauf anlegt. Zum jetzigen Zeitpunkt gibt
dieser noch nichts aus, es gibt ja auch noch keinen Container.

Daher legen wir doch einfach mal einen Container (hier Alpine 3.11, AMD64) mit Hilfe des Befehls
lxc-create an, kontrollieren dies und starten den Container:

root@lxc-host # lxc-create -n container1 -t download -- -d alpine -r 3.11 -a
amd64
Setting up the GPG keyring
Downloading the image index
Downloading the rootfs
Downloading the metadata
The image cache is now ready
Unpacking the rootfs

You just created an Alpinelinux 3.11 x86_64 (20200625_13:00) container.

http://vvv.lusc.de/dokuwiki/_export/code/orga/2020/lxc?codeblock=6

Last update: 2020/06/26 08:48 orga:2020:lxc http://vvv.lusc.de/dokuwiki/orga/2020/lxc?rev=1593161335

http://vvv.lusc.de/dokuwiki/ Printed on 2026/02/06 10:17

root@lxc-host # lxc-ls -f
NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED
container1 STOPPED 0 - - - false

root@lxc-host # lxc-start -n container1; sleep 60; lxc-ls -f
NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED
container1 RUNNING 0 - - - false

- - bei lxc-create sorgt dafür, dass die Parameter -d, -r und -a an das Template
download (selbst ein Shell-Script) übergeben werden.
Der sleep 60 soll nur ein gewisses Warten signalisieren
Der Container wird aber auch nach 600 oder 6000 Sekunden keine IP bekommen!

In den Container wechseln

Warum bekommt der Container keine IP? Nun, gehen wir doch mal in den Container und sehen uns
dort die Netzwerk-Konfiguration an:

root@lxc-host # lxc-attach container1
~ # ip a
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
~ # exit
root@lxc-host #

Der Container hat schlicht und einfach nur das lo-Interface!

Will man eben nur schnell einen Befehl im Container ausführen, kann man dies auch direkt mit lxc-
attach machen:

root@lxc-host # lxc-attach container1 -- ifconfig -a
lo Link encap:Local Loopback
 LOOPBACK MTU:65536 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Der - - ist notwendig, sonst interpretiert lxc-attach die Option -a und da er diese nicht
kennt, bricht er mit einer Fehlermeldung ab

(Netzwerk-)Konfiguration des Containers

LXContainer werden unter /var/lib/lxc/<CONTAINERNAME>/config konfiguriert, auch die
Netzwerk-Interfaces:

/var/lib/lxc/container1/config

http://vvv.lusc.de/dokuwiki/_export/code/orga/2020/lxc?codeblock=11

2026/02/06 10:17 5/9 LXC Quick-Start

LUSC - http://vvv.lusc.de/dokuwiki/

Template used to create this container: /usr/share/lxc/templates/lxc-
download
Parameters passed to the template: -d alpine -r 3.11 -a amd64
Template script checksum (SHA-1):
273c51343604eb85f7e294c8da0a5eb769d648f3
For additional config options, please look at lxc.container.conf(5)

Uncomment the following line to support nesting containers:
#lxc.include = /usr/share/lxc/config/nesting.conf
(Be aware this has security implications)

Distribution configuration
lxc.include = /usr/share/lxc/config/common.conf
lxc.arch = linux64

Container specific configuration
lxc.apparmor.profile = generated
lxc.apparmor.allow_nesting = 1
lxc.rootfs.path = dir:/var/lib/lxc/container1/rootfs
lxc.uts.name = container1

Network configuration
lxc.net.0.type = empty

Ganz unten steht lxc.net.0.type = empty - es gibt kein Netzwerk!

lxc-create liest die Datei /etc/lxc/default.conf ein und übergibt die dort platzierten
Parameter in der Container-Config. Und in dieser steht eben:

/etc/lxc/default.conf

lxc.net.0.type = empty
lxc.apparmor.profile = generated
lxc.apparmor.allow_nesting = 1

Man kann jetzt

von Hand (und für jeden zukünftigen Container) diese Config anpassen
eine Datei /etc/lxc/br-lxc.conf anlegen und diese dann beim Aufruf von lxc-create
übergeben:

lxc-create -n container2 -t download -f /etc/lxc/br-lxc.conf -- -d
alpine -r 3.11 -a amd64

die Datei /etc/lxc/default.conf anpassen

Für Fall (2 und) 3 würde es so aussehen:

http://vvv.lusc.de/dokuwiki/_export/code/orga/2020/lxc?codeblock=12

Last update: 2020/06/26 08:48 orga:2020:lxc http://vvv.lusc.de/dokuwiki/orga/2020/lxc?rev=1593161335

http://vvv.lusc.de/dokuwiki/ Printed on 2026/02/06 10:17

/etc/lxc/default.conf

lxc.apparmor.profile = generated
lxc.apparmor.allow_nesting = 1

lxc.net.0.type = veth
lxc.net.0.flags = up
lxc.net.0.veth.pair = LXCxxx
lxc.net.0.name = eth0
lxc.net.0.hwaddr = 0e:0e:XX:XX:XX:XX
lxc.net.0.link = br-lxc

lxc.net.0.ipv4.address = 192.168.42.XXX
lxc.net.0.ipv4.gateway = 192.168.42.1

0 bezeichnet das erste Interface im Container. Es kann also mehrere geben - bis sechs
funktioniert das auch auf jeden Fall ;)
Ich verwende hier veth (mehr oder minder default)
Man könnte dem Interface im Host einen Namen (veth.pair) geben. Das muss aber je
Container erfolgen, daher hier auskommentiert.
Im Container soll das Interface eth0 heißen
Die MAC-Adresse hwaddr wird beim Anlegen festgelegt.

Die XX werden durch Zufallswerte aufgefüllt. So bekommt jeder Container eine eigene
MAC-Adresse und (hoffentlich) beim Neustart die gleiche IP wie früher - abhängig von den
Einstellungen des dnsmasq
Im ersten Byte sind 02, 06, 0A und 0E für private Nutzung (eben zum Beispiel
Virtualisierung) reserviert.

Man kann (statt DHCP im Container) auch von außen eine IP und Default-GW festlegen, hier
auskommentiert, weil DHCP default ist

Mit dieser Einstellung (Netzwerk-Konfiguration in /etc/lxc/default.conf) bekommt ein neuer
Container nun eine IP:

root@lxc-host # lxc-create -n container2 -t download -- -d alpine -r 3.11 -a
amd64 && lxc-start container2 && sleep 60 && lxc-ls -f
Using image from local cache
Unpacking the rootfs

You just created an Alpinelinux 3.11 x86_64 (20200625_13:00) container.
NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED
container1 RUNNING 0 - - - false
container2 RUNNING 0 - 192.168.42.100 - false

Da das Image für Alpine 3.11 schon im Cache (/var/cache/lxc/) liegt, nimmt er direkt dieses
beim Anlegen

root@lxc-host # lxc-attach container2 -- ping -c3 8.8.8.8
PING 8.8.8.8 (8.8.8.8): 56 data bytes
64 bytes from 8.8.8.8: seq=0 ttl=118 time=4.978 ms

http://vvv.lusc.de/dokuwiki/_export/code/orga/2020/lxc?codeblock=14

2026/02/06 10:17 7/9 LXC Quick-Start

LUSC - http://vvv.lusc.de/dokuwiki/

64 bytes from 8.8.8.8: seq=1 ttl=118 time=5.065 ms
64 bytes from 8.8.8.8: seq=2 ttl=118 time=5.308 ms

--- 8.8.8.8 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 4.978/5.117/5.308 ms

Welche Images gibt es?

Will man wissen, welche Images es überhaupt gibt, kann man das entweder auf der Web-Seite
http://uk.images.linuxcontainers.org/ nachsehen, oder so tun, als ob man einen neuen Container
anlegen möchte:

root@lxc-host # lxc-create -n xx -t download -- --list --no-validate
[...]
root@lxc-host # lxc-create -n xx -t download -- --list -a amd64 --no-
validate
[...]
root@lxc-host # lxc-create -n xx -t download -- --list -d devuan --no-
validate
[...]
root@lxc-host # lxc-create -n xx -t download -- --list -d debian -a amd64 --
no-validate

DIST RELEASE ARCH VARIANT BUILD

debian bullseye amd64 default 20200625_05:24
debian buster amd64 default 20200625_05:24
debian jessie amd64 default 20200625_05:24
debian sid amd64 default 20200625_05:24
debian stretch amd64 default 20200625_05:24

Ausgaben bis auf den letzten Fall gekürzt
–no-validate damit's ein bisschen schneller geht (Nicht aber beim „echte“ Anlegen!)
Zum (weiteren) Filtern kann man die Parameter angeben:

-d (Distribution, z. B. „debian“, „devuan“, „alpine“, …„)
-r (Release, z. B. „buster“, „stretch“ für Debian, „beowulf“ für Devuan, „3.12, „3.11“ für
Alpine, …)
-a (Architektur, heute praktisch immer „amd64“. „i386“ braucht zwar etwas weniger
RAM, aber neue Ubuntus oder CentOS gibt es gar nicht mehr für 32-Bit)

Verschiedene Distris in LXContainern

Hier nochmal ein paar laufende Container mit Open-SSH in der erweiterten Ausgabe:

root@lxc-host # lxc-ls -f -F
name,state,pid,ram,swap,autostart,groups,interface,ipv4,ipv6,UNPRIVILEGED

http://uk.images.linuxcontainers.org/

Last update: 2020/06/26 08:48 orga:2020:lxc http://vvv.lusc.de/dokuwiki/orga/2020/lxc?rev=1593161335

http://vvv.lusc.de/dokuwiki/ Printed on 2026/02/06 10:17

NAME STATE PID RAM SWAP AUTOSTART GROUPS INTERFACE IPV4
IPV6 UNPRIVILEGED
Alpine3C RUNNING 3059 5.87MB 0.00MB 0 - eth0, lo
192.168.42.144 - false
Archlinux RUNNING 4704 39.93MB 0.00MB 0 - eth0, lo
192.168.42.132 - false
CentOS8 RUNNING 4765 50.61MB 0.00MB 0 - eth0, lo
192.168.42.133 - false
Debian10 RUNNING 3340 83.50MB 0.00MB 0 - eth0, lo
192.168.42.130 - false
Devuan10 RUNNING 3414 25.03MB 0.00MB 0 - eth0, lo
192.168.42.131 - false
Voidlinux RUNNING 5271 7.46MB 0.00MB 0 - eth0, lo
192.168.42.158 - false

Deswegen verwende ich immer häufiger Alpine :D

Template "oci"

Mit dem Template „oci“ kann man aus diversen Container-Registries (z. B. https://hub.docker.com)
Images herunterladen und diese als LXContainer auf die Platte legen. Dies klappt nicht immer auf
Anhieb, die meisten sind dann für lxc-execute konfiguriert (nur ein Command im Container), ggf.
muss noch DHCP aktiviert werden, usw.

Damit dies auf Debian 10/Buster funktioniert, muss man das Paket „skopeo“ händisch aus
Testing/Bullseye installieren (http://ftp.de.debian.org/debian/pool/main/s/skopeo/), dazu noch umoci
und die Datei /etc/containers/policy.json anlegen:

/etc/containers/policy.json

{
 "default": [
 {
 "type": "insecureAcceptAnything"
 }
],
 "transports":
 {
 "docker-daemon":
 {
 "": [{"type":"insecureAcceptAnything"}]
 }
 }
}

https://hub.docker.com
http://ftp.de.debian.org/debian/pool/main/s/skopeo/
http://vvv.lusc.de/dokuwiki/_export/code/orga/2020/lxc?codeblock=19

2026/02/06 10:17 9/9 LXC Quick-Start

LUSC - http://vvv.lusc.de/dokuwiki/

From:
http://vvv.lusc.de/dokuwiki/ - LUSC

Permanent link:
http://vvv.lusc.de/dokuwiki/orga/2020/lxc?rev=1593161335

Last update: 2020/06/26 08:48

http://vvv.lusc.de/dokuwiki/
http://vvv.lusc.de/dokuwiki/orga/2020/lxc?rev=1593161335

	LXC Quick-Start
	Vorbereitung
	Notwendige Pakete
	Bridge als Netzwerk-Basis für die LXContainer
	Routing & NAT
	DHCP & DNS - dnsmasq

	Container erstellen
	In den Container wechseln
	(Netzwerk-)Konfiguration des Containers
	Welche Images gibt es?
	Verschiedene Distris in LXContainern

	Template "oci"

