
Securing your system with
AppArmor & SELinux

Johannes Segitz
SUSE Security Team

2014/11/27

Introduction

What will we cover?

• Mandatory access control

• AppArmor

• SELinux

• Comparison

50 minutes are not much time, so:

• Mix between concrete examples and higher level concepts

• Complex systems, some statements are simpler than the reality

3 of 41

Who am I?

• SUSE employee since 2014, security engineer, resident in Germany

• Long time interest in IT security

• Long time fan of mandatory access control systems (Rule Set
Based Access Control - RSBAC, 1998)

• First time in Stockholm, very nice city

4 of 41

Mandatory access control

Discretionary access control (DAC)

Usual form of access control in Linux

• Typical example:

ls -l /etc/shadow

-rw-r-----. 1 root shadow 1421 /etc/shadow

• Discretionary: The owner of an object can control the access of the
objects he owns

6 of 41

Discretionary access control (DAC)

Drawbacks:

• Coarse: Basically 3 x rwx

• Prone to (user) error

ls -lah ~/.ssh/id_rsa

-rw-rw-rw-. 1 jsegitz users 1.7K ~/.ssh/id_rsa

• Hard to analyze

• root == God (- capabilities)

But it’s familiar, easy to use and to understand

7 of 41

Mandatory access control (MAC)

Mandatory (in this context):

• Access control decisions are not made by the owner/user

• Access control rules are managed centrally

Advantages:

• Access control in the hand of people who know what they’re doing

• Centralized control and review is possible

• Often very fine grained → compartmentalization

Drawbacks:

• (Sometimes) hard to understand

• (Sometimes) complex to administer

• Missing support/experience
8 of 41

AppArmor

History

Linux security module (LSM)

• Since 2.6.36 part of the Linux kernel

• Developed by Immunix, bought by Novell

• Default system in SUSE, openSUSE and Ubuntu

10 of 41

Basic idea

Restrict possible actions of processes

• Map profile to process using the path to the binary as key

• (Often) used only for network facing daemons

Advantages:

• Easy administration

• Good tools are available

• Supported in SUSE products

Disadvantages:

• Can’t do everything that SELinux can do

• Smaller community

11 of 41

AppArmor profiles

Live in /etc/apparmor.d

• Named by convention: /bin/ping → /etc/apparmor.d/bin.ping

• Local override via files in /etc/apparmor.d/local

• openSUSE 13.1:
◦ Active profiles for 37 programs
◦ 100 additional profiles under /usr/share/apparmor/extra-profiles

12 of 41

Profile for /bin/ping

#include <tunables/global >

/{usr/,}bin/ping {

#include <abstractions/base > # 66 rules

#include <abstractions/consoles > # 4 rules

#include <abstractions/nameservice > # 78 rules

capability net_raw ,

capability setuid ,

network inet raw ,

/{usr/,}bin/ping mixr ,

/etc/modules.conf r,

}

13 of 41

More complicated profile

#include <tunables/global >

/usr/bin/foo {

#include <abstractions/base >

capability setgid ,

network inet tcp ,

link /etc/sysconfig/foo -> /etc/foo.conf ,

/dev/{,u}random r,

/etc/foo/* r,

14 of 41

More complicated profile

/lib/ld -*.so* mr ,

/lib/lib*.so* mr ,

/proc /[0 -9]** r,

/tmp/ r,

/tmp/foo.pid wr ,

/tmp/foo_data .* lrw ,

/@{HOME }/. foo_lock kw ,

15 of 41

Execute modes

/bin/* Px ,

/usr/bin/foobar Cx ,

/bin/mount Ux ,

Different ways of executing other programs:

• Px: Discrete profile execute mode

• Cx: Discrete local profile execute mode

• Ux: Unconfined execute mode

• ix: Inherit execute mode

Lowercase versions (px, cx, ux) do not scrub the environment

16 of 41

More complicated profile

Remember: /usr/bin/foobar Cx → discrete local profile

profile /usr/bin/foobar flags=(complain) {

/bin/bash rmix ,

/bin/cat rmix ,

/var/log/foobar* rwl ,

/etc/foobar r,

rlimit data <= 100M,

rlimit nice >= 10,

}

}

17 of 41

Profile creation

Ways of creating new profiles:

• Write them from scratch

• Adapt existing profiles

• Use one of the tools that are shipped for that purpose

18 of 41

aa-autodep

aa-autodep creates a basic framework of a profile in complain mode.

aa-autodep ls

yields

#include <tunables/global >

/usr/bin/ls flags=(complain) {

#include <abstractions/base >

/usr/bin/ls mr ,

}

So that will be really useful ...

19 of 41

aa-genprof

Next try: aa-genprof
• Generates a basic profile, sets it to complain mode
• Execute the application and analyze log events

> aa-genprof ls

Writing updated profile for /usr/bin/ls.

Setting /usr/bin/ls to complain mode.

<snip>

Profiling: /usr/bin/ls

[(S)can system log for AppArmor events] / (F)inish

Work with the application and try to provoke every access pattern

ls /dev

20 of 41

aa-genprof

Scan the resulting log entries:

Profile: /usr/bin/ls

Path: /dev/

Mode: r

Severity: unknown

[1 - /dev/]

[(A)llow] / (D)eny / (G)lob / Glob w/(E)xt / (N)ew /

↪→ Abo(r)t / (F)inish / (O)pts

21 of 41

Other tools

• aa-logprof: Interactively scan and review log entries

• aa-easyprof: Easy to use tool. Results might be less restrictive
than with other tools

• aa-exec: Launches a program in an AppArmor profile

Always review the result of the tools!

22 of 41

SELinux

History

Security Enhanced Linux

• Linux security module (LSM), developed by the National Security
Agency (NSA)

Don’t panic, it’s open source and reviewed thoroughly

• First release 2000, since then integrated in the Linux kernel

24 of 41

Basic idea

• Type Enforcement (TE). Every object has
◦ an user: unconfined u
◦ a role: unconfined r
◦ a type: unconfined t
◦ a sensitivity: s0-s0
◦ a category: c0.c1023

• These form the Security Context (SC)

unconfined_u:unconfined_r:unconfined_t:s0 -s0:c0.c1023

25 of 41

Basic idea

(Almost) everything has a SC.

• Files

ls -lZ /etc/shadow

----------. root root system_u:object_r:shadow_t:s0

↪→ /etc/shadow

• Processes

ps axZ | grep ’postfix/master’

system_u:system_r:postfix_master_t:s0 1250 ? Ss

↪→ 0:00 /usr/lib/postfix/master -w

• Sockets, packets, ... 83 security classes

26 of 41

Basic idea

• DAC comes first

• Every access decision is checked against the SC of the source and
the target

• Firewall for system calls

27 of 41

Basic rules

Basic SELinux statements:

type type1;

type type2;

role role1 types type1;

role role2 types type2;

allow type1 type2:file { read getattr execute };

28 of 41

Reference policy

Basic SELinux statements are not the way to go:

• Way too many rules for even simple programs

• Hard to maintain

• Hard to distribute the work of creating policies

Solution: Reference policy (refpolicy)

• Community project to create a base policy

• Modular, uses M4 macros to create interfaces

• Contains custom modifications for various distributions

29 of 41

Working with refpolicy

What does it take to confine a daemon in SELinux?

• Types for the processes (domain types)

• Types for the files

• Transition rules

• Rules to allow standard interactions (e.g logging, . . .)

Ways of creating new modules:

• Write them from scratch

• Adapt existing profiles

• Use one of the tools that are shipped for that purpose

30 of 41

Adapt existing profiles

Good place to start: refpolicy-contrib
https://github.com/TresysTechnology/refpolicy-contrib

• Currently 358 modules

• Ranging from < 20 lines to > 1400 (apache)

• Module consists of three files:
◦ .fc files: Contain rules that specify types for files
◦ .if files: Contain interfaces that the module provides
◦ .te files: Contains all rules necessary for this module

31 of 41

https://github.com/TresysTechnology/refpolicy-contrib

Example: arpwatch .te file

One of the smaller profiles, but still only parts of the module

policy_module(arpwatch , 1.11.0)

type arpwatch_t;

type arpwatch_exec_t;

init_daemon_domain(arpwatch_t , arpwatch_exec_t)

type arpwatch_data_t;

files_type(arpwatch_data_t)

type arpwatch_var_run_t;

files_pid_file(arpwatch_var_run_t)

32 of 41

Example: arpwatch .te file

allow arpwatch_t arpwatch_t:capability { net_admin

↪→ net_raw setgid setuid };

dontaudit arpwatch_t arpwatch_t:capability

↪→ sys_tty_config;

allow arpwatch_t arpwatch_t:tcp_socket { accept listen

↪→ };

manage_files_pattern(arpwatch_t , arpwatch_data_t ,

↪→ arpwatch_data_t)

kernel_read_network_state(arpwatch_t)

kernel_read_system_state(arpwatch_t)

33 of 41

Example: arpwatch .fc file

/usr/sbin/arpwatch --

↪→ gen_context(system_u:object_r:arpwatch_exec_t , s0)

/var/arpwatch (/.*)? --

↪→ gen_context(system_u:object_r:arpwatch_data_t , s0)

/var/run/arpwatch .*\. pid --

↪→ gen_context(system_u:object_r:arpwatch_var_run_t ,

↪→ s0)

Specifies only initial context. Used by restorecon and other SELinux
tools

34 of 41

audit2allow

Looked tedious? It is.

audit2allow is a bit like aa-logprof

• Analyzes SELinux denial messages

• Generates rules to allow necessary access

• Is aware of refpolicy interfaces

• Suggests booleans that could allow the access

35 of 41

SELinux log messages

type=AVC msg=audit (1416499522.810:77): avc: denied

↪→ { transition } for pid =1282 comm="sshd"

↪→ path="/usr/bin/zsh" dev="vda2" ino =40462

↪→ scontext=system_u:system_r:kernel_t:s0

↪→ tcontext=unconfined_u:unconfined_r:unconfined_t:s0

↪→ tclass=process

audit2allow uses those messages

• But don’t use it with every denial, think first. See scontext above.

• In this case systemd was running as kernel t, not init t.

36 of 41

audit2allow example

Use all denials since the last boot (-b) and create a module named
local (-M) with refpolicy interfaces (-R).

audit2allow -b -M local -R

• Generates four files: local.te, local.if, local.fc and a
compiled module local.pp

• Analyze at those files!

• Load with

semodule -i local.pp

37 of 41

Comparison

SELinux or AppArmor

Which system is better?

• It depends :)

• Do you know one of those systems? Stick with it

• Do you work in a high security environment? SELinux

• Do you learn from scratch and have some time? SELinux

You can’t have both active at the same time, so you must choose.

My personal favorite: SELinux.

39 of 41

Endnote

Thanks

Thank you for your attention. Questions?

41 of 41

	Introduction
	Mandatory access control
	AppArmor
	SELinux
	Comparison
	Endnote

